• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

  • Twitter
  • YouTube
NASBS

NASBS

North American Skull Base Society

  • Home
  • About
    • Mission Statement
    • Bylaws
    • NASBS Board of Directors
    • Committees
      • Committee Interest Form
    • NASBS Policy
    • Donate Now to the NASBS
    • Contact Us
  • Industry
    • Exhibits and Support & Visibility Opportunities
    • Industry Archives
  • Meetings
    • 2026 Annual Meeting
    • Abstracts
      • 2026 Call for Abstracts
      • NASBS Poster Archives
      • 2025 Abstract Awards
    • 2025 Recap
    • NASBS Summer Course
    • Meetings Archive
    • Other Skull Base Surgery Educational Events
  • Resources
    • Member Survey Application
    • NASBS Travel Scholarship Program
    • Research Grants
    • Fellowship Registry
    • The Rhoton Collection
    • Webinars
      • Research Committee Workshop Series
      • ARS/AHNS/NASBS Sinonasal Webinar
      • Surgeon’s Log
      • Advancing Scholarship Series
      • Trials During Turnover: Webinar Series
    • NASBS iCare Pathway Resources
    • Billing & Coding White Paper
  • Membership
    • Join NASBS
    • Membership Directory
    • Multidisciplinary Teams of Distinction
    • NASBS Mentorship Program
  • Fellowship Match
    • NASBS Neurosurgery Skull Base Fellowship Match Programs
    • NASBS Neurosurgery Skull Base Fellowship Match Application
  • Journal
  • Login/Logout

2025 Poster Presentations

2025 Poster Presentations

 

← Back to Previous Page

 

P343: DEEP LEARNING FOR AUTOMATIC SEGMENTATION OF PITUITARY ADENOMAS: A VIDEOMICS STUDY
Edoardo Agosti1; Alberto Paderno2; Andrea Pagnoni1; Vittorio Rampinelli1; Pier Paolo Panciani1; Alessandro Fiorindi1; Cesare Piazza1; Marco Maria Fontanella1; 1University of Brescia; 2Humanitas University of Rozzano

Introduction: Fully convolutional neural networks (FCNNs) applied to video analysis are of particular interest in the field of head and neck oncology. The application of video analysis to diagnostic endoscopy has been termed 'videomics'. Recently, videomics has also been applied to endonasal endoscopy, but to our knowledge, no study has validated the possible role, advantages, and limitations of videomics in the intraoperative recognition of pituitary adenomas (PAs). The aim of this study was to test methods based on FCNNs for the semantic segmentation of PAs.

Methods: A dataset was retrieved from the institutional registry of a tertiary academic hospital. The inclusion criteria were adult patients with PA, who underwent endoscopic endonasal surgery for the first time with narrow band imaging (NBI) endoscopic video recording. Manual segmentation of video frames was performed with Label Studio software (Figure 1). Three FCNNs (U-Net, U-Net 3, and ResNet) were studied for segmenting the PA images. The performance of the FCNNs was evaluated for each network tested and compared with the gold standard, represented by manual annotation performed by expert physicians.

Results: A total of 20 NBI endoscopic videos of PAs surgery has been analyzed. For each video, 35 frames were manually selected by two authors. The dataset consisted of 700 frames. The best results in terms of the Dice similarity coefficient (Dsc) were obtained by ResNet with 5 blocks (× 2) and 16 filters, with an average value of 0.6559. All tested FCNNs exhibited very high variance values, leading to very low minimum values for all evaluated parameters. The inference time of the processing networks ranged from 14 ms to 115 ms.

Conclusion: FCNNs, in particular ResNet, show promising potential in the analysis and segmentation of video-endoscopic images of PAs. All tested FCNNs architectures demonstrated satisfactory results in terms of diagnostic accuracy. The inference time of the processing networks was particularly short, thus showing the possibility of real-time application.

View Poster

 

← Back to Previous Page

Copyright © 2025 North American Skull Base Society · Managed by BSC Management, Inc · All Rights Reserved